Flying kites crosses cultures, generations, age groups, social groups, and nations. Kite flying is a wonderful and peaceful pastime. Kiting is for everyone.
A kite is a heavier-than-air object that flies… just like an airplane. Most kites have three main components: the kite body (which comes in many different shapes and sizes), the bridle (or harness), and the control line (or tether).
The kite body is made up of a framework and outer covering. The four forces of flight (i.e. Lift, Weight, Drag, and Thrust) affect kites in the same way they affect airplanes, and anything else that flies.
Lift is the upward force that pushes a kite into the air. Lift is generated by differences in air pressure, which are created by air in motion over the body of the kite. Kites are shaped and angled so that the air moving over the top moves faster than the air moving over the bottom.
Weight is the downward force generated by the gravitational attraction of the Earth on the kite. The force of weight pulls the kite toward the center of the Earth.
Thrust is the forward force that propels a kite in the direction of motion. An airplane generates thrust with its engines, but a kite must rely on tension from the string and moving air created by the wind or the forward motion of the kite flyer to generate thrust.
Drag is the backward force that acts opposite to the direction of motion. Drag is caused by the difference in air pressure between the front and back of the kite and the friction of the air moving over the surface of the kite.
To launch a kite into the air the force of lift must be greater than the force of weight. To keep a kite flying steady the four forces must be in balance. Lift must be equal to weight and thrust must be equal to drag. |